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PREFACE N

The initial goal of this project was to fully design a multiple
computer shared memory system with a serial, rather than the
conventionally parallel, transmission link. The shared memory was to

be distributed with each computer communicating with 1its own copy of

DR L e oo T TV Y Yy -

shared memory. Reads from the local copy of shared memory would occur
immediately while writes to shared memory would require a serial
transmission on the network to update all distributed shared memory
copies.

In the associated research and development process, data-driven
architectural possibilities were discovered and applied to the seri-

ally-linked shared-memory system under development. In the final

analysis, the data-driven concept application superceded the importance
g of initial concepts and was by far the most exciting aspect of the

project.

The project started mid 1982 sand has experienced intermittent
progress. In late 1983, it was discovered that similar research had
been undertaken elsewhere [4], [5]. These research goals did not
i include data-driven structures and were simply defined to design a high
speed multiprocessor system.

This report has been difficult to formulate to assure a clear
understanding by the reader. The problem results from the multi-level

structure of the system being explained. The top level system must be
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understood before subsystem 1interactions become clear and the sub-
systems must be understood before the top level system is comprehended.
This anomaly forces the author to repeat the concept explanations in
many cases.

The proposed system requires the user-programmer to understand

inherent limitations. In shared memory systems, errors occur when

multiple computers write to the same location simultaneously. The
writes are actually performed sequentially and the program in each
[A computer can not detect the sequence order. However, one write is last
and it remains as the memory data until overwritten. The same error
occurs in replicated shared memory systems. The error is manifested by
the fact that each copy of shared memory may have a different value for

the simultaneous write case. It 1s expected that this fact would

create havoc in the executing program. Another concern 1s the
scheduling of data-driven software in multiple computer systems. A
program 1is to be executed when data inputs become available, 1.e.
change value. Inputs to a program may come from multiple
unsynchronized computers at unpredictable times. Without proper
synchronization control, transient errors in final and intermediate
data outputs may occur. Multi-computer synchronization 1is therefore

mandatory.
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1. INTRODUCTION AND BACKGROUND

The objective of this project is to develop hardware and software
concepts supporting a data-driven serially-linked shared-memory network
for real-time applications. A small prototype demonstrator 1is to be
designed to support the concept development.

This project encompasses the digital system, computer network and
real-time application subjects. During the course of this document,
the author will introduce and support 1ideas that blend the three
mentioned subjects into a single innovative architecture. The 'glue'
for this blend 1s a unique data-driven hardware and software processing
scheme. To set the stage, the applicable research performed in support

of this project is now summarized.

COMPUTER NETWORKS

An important subject being actively researched in computer science
today 1s computer networking. Networks with performance measured in
terms 1including speed, cost, utility, efficiency, expandability and
reliabilitv are currently being developed.

Networks are transmission media that permit communication between
two or more devices. The transmission media can be implemented by
electrical and fiber-optic means and are categorized into many types
including (1) Shared Memory, (2) Hierarchy, (3) Bus, (4) Star, and (5)
Ring. As these network topologies are examined, the final parameters

of the network being designed must be developed. The initial
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attributes of the decsired network arve:

(1) Shared random-access memory emulation, (2) Serial fiber-optic
transmission medium, and (3) Near avutonuomnus operation of each
networked computer. Attributes | and 2 conventionally imply a serial
message scheme with a word count of two words per message; one word
indicating the data address and the second word being the data.

The conventional shared memory network configuration 1is
illustrated in figure 1.l1. Shared memory netwerks support parallel
compunication among the networked computers by allowing all computers
to access a single common cent;alized memnry. Any computer can access
any word of the shared memory at any time. Specified shared data words
can be arranged as semaphores to facilitate communication among the
computers. In some shared memory units, circuitry exists that enables

one computer to interrupt another computer for synchronization

purposes.

CPU 1/0 /0 Cry
1 | 1 |

MEM MEM

SHARED
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MEM MEM

1 ] 1 1

cry lﬁl/ﬂ 1/0 Cru

V Figure 1.1 Shared Memcry Network Configuratien
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Shared memory transmission media consist of typically 16 to 24
unidirectional parallel address lines, 16 to 32 parallel bidirectional
data lines and 3 to 10 control lines. Transmission speed is typically

1 to 10 microseconds per single word transfer. Physical spacing

between the computers is limited to tens of feet due to the high speed
parallel transmission requirements, and electrical transmission line
characteristic limitations. There 18 no theoretical 1limit to the
number of computers able to be linked in a shared wemory system.
However, shared memory access time 1increases with the number of

actively involved computers. Therefore shared memory systems typically

connect sixteen or less computers.

Real-time software utilizations of shared memory typically
configure the 'common block' of shared datea variables in the shared
memory area. This configuration permits easy distribution of data among
the varfous software modules.

Hierarchy network configurations are 1llustrated in figure 1.2.
Hierarchy networks can be implemented by shared memory networks where
all networked computers will not access a single centralized shared
memory. There may be layers of shared memory networks to be pierced
before one computer may 'talk' to another computer. This structure vas
demonstrated in the CTm* project [3] at Carnegie Mellon University where
50 PDP-11 computers were linked in a hierarchial network structure.

A bus network configuration 1s {llustrated in figure 1.3. Bus

networks support digital communication by one of the following schemes:
(1) time division multiplexing (TDM),

(2) frequency divieion multiplexing (FDM),
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Figure 1.2 Rierarchy Network Configuration

CprU 1/0 CPU 1/0
MEM NIU MEM NIU

MEM NIU MEM NIU MEM NIU

CPU 1/0 CPU 1/0 CPU 1/0
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(3) carrier Bsense multiple access with collision detection
(CSMA/CD) .

(4) token passing bus master control.

The TDM scheme controls bus communication by allowing a single
node to transmit data during a specified repetitive time slot.

The FDM scheme controls bus communication by assigning a specified
carrier frequency to each transmitting and receiving node pair. This
is similar to the control of the radio frequency airwaves.

The CSMA/CD is a prevalent way to implement local area networking.
The scheme allows any node to transmit its message when it detects no
traffic on the bus. I1f by chance, two or more nodes transmit nearly
simultaneously a collision occurs and they immediately quit and perform
retransmissions at different delay times later. This syriem 1is
efficient when transmitting large data messages but not for small data
messages.,

Token passing controls bus communications by allowing only the
node with the token to transmit. When communication is complete, the
token is passed to a node that needs to transmit. Token passing for
few word messages 18 not efficient. Since the message packet of the
thesis project is anticipated to be only two words long, CSMA/CD and
token passing were dropped from further comnsideratfion.

A star network configuration is illustrated in figure 1.4. Star
networks also permit communication by TDM or FDM structures. All nodes
receive information simultaneously. A transmitting node must know when
to transmit or on what frequency band to transmit. This star structure
is 1deal for fiber-optic systems with limited receiving dynamic range

which is currently a significant problem for fiber-optic bus
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Figure 1.4 Star Network Configuration

configurations. The central star connector 1is a passive device.
However by inserting ‘'smart' wmultiplexing circuitry, the star could
govern all metwork transmissions allowing near-autonomous operation at
each star network tip. Therefore TDM or FDM protocols would not be
required.

A ring network configuration 1s illustrated in figure 1.5. Ring
networks permit data transmission around a ring of networked computers.
Each node on the ring stores incoming data and then forwards the data

plus sany self generated data to the next node on the ring. The node

that generates a data message must know not to forward that particular
- message when received. A source node number field in the transmission

packet 1s therefore employed for this purpose. All nodes recejving

message examine the source field to determine the source number and

SRR
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Figure 1.5 Ring Network Configuration

decide vhether or not to forward the message.

Token passing is an additional method to determine which node may
talk on the ring network. Similar to & source number field is a token
field. When a node receives a message with the token field empty (e.g.
all zeroes) he may not talk or append messages on the ring.
Conversely, if the node desires to talk, it must discover a message
packet with e full token field, forward that message with ar empty
token field and then append any messages to the ring. The last message
the node transmits must have a full token field. Ring protocols
determine the maximum transmission time or volume a node mav transmit
before relinquishing the token. If no node has data to transmit, & null
message with a full token field must be constantly transmitted around

the ring.
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Soon to be blended into the initial ring network configuration is

the author's version of a data~driven network architecture. However,
the prevalent data-driven, Data Flow architecture should be first

discussed in order not to confuse the subjects.

PREVALENT DATA-DRIVEN ARCHITECTURES

Currently available data-driven architectures are not similar to
the data-driven architecture proposed by this author. These
architectures are in line with Data Flow technology whereby a software
program 1s executed when the data inputs to the program becone
available. The hardware behind this technology 1s structured as a
large number of very tightly coupled arithmetic logic units (ALU's).
An ALU is presented a program when data 1inputs to the program are
available. This large numbered parallel ALU structure is a product of
the following philosophy: Since integrated circuit manufacturing
technology 1s very close to the theoretical limits, the only way to
improve the performance of a computer is to compose the computer with a
large number of separate processing elements. Data Flow software
technology 1s Dbeing developed to efficiently wuse the numerous
processing elements as a very high speed computer. The architecture is
constructed to take advantage of parallel structures in the software.
That 1is, all parallel elements of the software stucture are executed
simultaneously. Repeating, the proposed data-driven architecture is not
related to the data-driven Data Flow technology, although there is no
reason the two systems could not be integrated. The author's version
of 'data-driven' simply stated 1is that a program i1s scheduled for

execution when any of the program's data inputs change value.
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The connotation of 'real-time' 1in computer science terminology
varies from user to user. Simply, a real-time computer program
must execute at a rate greater than or equal to its input data rate.
While a computation response time of five seconds may be considered
real-time for one user group, one millisecond may be considered an
inadequate response time for another user group. Analog computere are
inherently real-time by reason that their summing and multiplying
functions are considered instantaneous and that analog integration is
solely deterministic time dependent. Von Neuman computers are not
inherently real-time and neither are the associated computer networks.
A real-time digital computer product is a function of the applied
software rather than the hardware. The hardware only performs 1its
programmed tasks as fast as technologically possible. The real-time
digital computer program simply repeats a calculation sequence that
approximates an analog process. The repetition rate is chosen so that
the calculation outputs appear continuous to the observer.

Shared wemory systems for real-time application of multiple
computer systems permit quick and random access to shared data. The
data in the shared memory is typically structured as a Fortran common
block. The shared common block may contain various date arrays and
assorted variables. These arrays and variables never change their
physical address during the run of a real-time program and are never
gwapped to/from secondary storage as may be the case in a single or
multiple central processing unit (CPU) {nteractive but non-real-time

application. The multiple computer shared common block provides an

easy way to declare data to be shared between several CPU's.
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A MULTI1-COMPUTER REAL-TIME FLIGHT SIMULATOR

The real-time system of concern can be best explained as a
multi-computer flight simulator. The flight simulator structure 1is
ghown in figure 1.6. The pilot sitting in the cockpit views a dynamic
out~the~window (0TW) scene that simulates the actual OTW scene during
flight. One computer interfaces the cockpit joystick, throttle and 1/0
devices, another computer generates the graphics while the wain
computer calculates the equation of flight motion. The entire scheme
operates at a synchronous repetition speed so as to appear to be an
analog function to the pilot. This speed is normally 30 to 100
repetitions per second.

Considering the software to be basically configured as a
synchronous and repetitive polling structure and that apriori pilot
commanded inputs are not known and that fast respomse time is required,
the entire program must remain in each computer's main memory. There
is insufficient time for swapping programs to/from secondary memory no
matter how infrequently used.

To summarize the shortcomings of the flight simulator computer
configuration is to list the problems that the proposed data~driven
information network will solve. Namely,

(1) Due to the shared memory system, the computers must be physically
close.

(2) Due to the real-time software structure, large main memories are
required and seccndary memories are not utilized.

(3) Computational power 1is continuously expended regardless of varying

workload requirements of the real-time system. For example, OTW

scenery 1s more dynamic when flying fast and low than flying high and
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Figure 1.6 Multi-Computer Flight Simulator
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slow. Workload requirements are a function of the OTW scenery

dynamics.
(4) Shared memory network bandwidth is continuously consumed, again

regardless of varying workload requirements.
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2. DATA-DRIVEN SYSTEM REQUIREMENTS AND DESIGN SKETCH

After observing current network capabilities and program operation
deficiencies in the real-time arena, the requirements and design of the

data-driven information network for real-time multiple computer systems

was formalized.

T v or v LA & =ikl

The network requirements are derived from an optimized blend of

real-time application of available network components. The

requirements are:

TEN

! (1) Shared memory emulation. To the host computer operating

software, the network must appear as a shared mewory unit which implies

that the network is nearly transparent. This will permit an autonomous

or near autonomous program operation. Reads and writes to the shared

memory shall require no more host CPU time than conventional shared

memories which is approximately the same time as main memories (.5 to 1

microsecond). To increase the thruput of the shared-m:mory network, a

copy of the shared-memory is to be located at each netJorked computer.
Shared memory reads would involve only the computers locally owned copy
of the distributed shared memory while shared memoy writes would

update all copies of distributed shared memory.

(2) Serial 1linking. To avoid bulky and limited distance shared

memory cables, high speed fiber-optic serial links shill be employed.

Shared memory transfer times shall be accommodated and with fiber-

optics, the distance between computers can be eesily uwp to 10

kilometers.
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(3) Information only transfer. To ircrease the efficiency of the

LA
A S

- network, the only items transmitted on the network are date variables
-~ that have been updated, or written to with new values. These new
t: values are termed 'information'. A data variable can only acquire a

new value as result of a write action by a CPU, or direct memory access

Rt

(DMA), to the particular data variable. Therefore only write actions
" instigating new data variable values «can 1instigate a network
transmission. The information only transfer gives birth to the data-
driven concepts of the entire system architecture. It should be
remembered that 1in conventional real-time systems of concern, the
majority of write actions to shared data variables do not modify the
variable value but would still demand a network transmission.

(4) Data address vectored interrupt (DAVI), When a computer
receives information from the network, an interrupt shall be generated
by the receiving node hardware directing the receiving computer to the
software needed to process the information. This technique is emploved
to 1increase efficiency and to minimize the response time of the
reacting software program.

With these requirements in mind, the initial block diagram design
of the Serially-Linked Shared-Memory (SLSM) ring network is illustrated
in figure 2.1. A detailed block diagram of the network node is shown
in figure 2.2. These block diagrams illustrate the major component
configurations: (1) Serial Communication Scheme, (2) Serial/Parallel
Transmission and  Reception, (3) Distributed Shared  Memory,
(4) Information Detection, and, (5) Data Address Vectored Interrupts.

The grouping of each local copy of the Distributed Shared Memory with

- Serial/Parallel Transmission and Reception, Information Detection, and
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DAV] unit is labelled the Local Shared Mewory Serial Interface Unit

(LSMSIU).

SERIAL COMMUNICATION SCHEME

The serial format is basically an address followed by data. For a
1 Mbyte shared memory system, there would be 20 address bits followed
by 8 data bits. Each node on the network must be identified by a
number and this number must be appended to each message the node

generates.

SERIAL/PARALLEL TRANSMISSION AND RECEPTION

All address and data inside the node and the host computer is
operated on 1in parallel format. All network transmissions are
formatted serially. Therefore, a serial to parallel converting
receiver and a parallel to serial converting transmitter must interface
the network and node hardware, The transmitter must append its node
number to node generated messages. When receiving serial information,
the node number fleld must be examined to see 1f the message should be

forwarded.

DISTRIBUTED SHARED MEMORY

The shared memory enulation is Implemented as a distributed shared
b memory. An 1dentical configured copy of the shared data variables
shall reside at each networked computer node in memory labelled local

shared memory.

INFORMATION DETECTION
Information is generated onlv when a host computer is writing new

data to a shared memory location. Information is detected by a

R W, PR SRy




18
difference in any bit between the data currently stored in a shared
memory location and the data the computer is currently writing to that
location. Once detected, the new data together with its address is

loaded into a parallel/serial transmitter buffer.

DATA ADDRESS VECTORED INTERRUPT SCHEME

When new data 1is received from the network, the data address is
employed to fetch an interrupt vector frua the interrupt vector lookup
table. An interrupt is then requested and the vector guides the

computer to the appropriate code to process the new data.

The basic concept structure of the entire system should now be

evident.
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3. NETWORK HARDWARE CONCFPT EIL.ARORATION

The following hardware concept discussion descrihes a complete
generic configuration of a data-driven information network components
for real-time multiple computer systems. Figures 2.1 and 2.2
{llustrated a block diagram of sn entire Data-Driven Serially-lLinked

Shared-Memory ring network.

SERIAL COMMUNICATION SCHEME

All serial transmissions are unidirectional point-to-point at an
approximate speed of 10 to 100 Mbits/second. The transmission speed is
selectable so as to obtain & desired system message capacitv. The
format of the transmitted information 1s shown in figure 3,1,
Basically the inforwation address followed by the information data is
transmitted. A source number tag, parity bits, and mestagc synchron-
izatf{on bits are concatenated to the information address and data. The
source number tag indicates which LSMSIU 1is the author of the
transmitted information. Of course, a network of only twe LSMSIUs does

not require a source number tag.

Sync Source Number Data Address Data

Figure 3.1 Seriel Information Word Foimat
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Fiber-optics are employed herein as no more than a very high speed
long distance serisl transmission med{ium. However the ring
architecture was partially chosen due to the ease of implementation
with fiber-optics. Some applications of this architecture may realize
that very high speeds are not required and conventional electrical
mediums may be sufficient. A parallel transmission scheme particularly
for short distances may be employed with this data-driven architecture.

The system designer or system implementer must decide transmission
characteristics given the physical configuration of the system to be
designed. The system transmission parameters are: (1) Physical
distances between computer network nodes, (2) Number of network nodes,
(3) Speed of light in a fiber being approximately two~thirds of light
speed in a vacuum, (4) Message duration time which is the product of
transmission speed and the number of bits in a message, and (5) Number
of messages per second transmitted by each node.

Figure 3.2 illustrates the ring physical layout for the message
travel time analysis graph presented in figure 3.3. This graph
illustrates the significance of message transmission time as function
of the fiber distance. The system designer wust compute the required
transmission rate (Mbit/sec) from the particular fixed variables of
distance between computers and system message capacity. Considering
the actual transmission time, 1t should be noted that the transmission
rate becomes less significant as the intercomputer distance increases.
And it should also be noted that higher transmissicn rate equipment is
more expensive and has a higher bit error rate than slower fiber-optic
systems. The other design consideration is the average and burst rate

that a host computer can write data, with and/ar without informwation

|

it - et s o N - ~> R e - . T T - - e :
aatosetuniciubsitntedhesiidh i e i s TN S U S U TR U O R SR

| NN USSR I

P o S




Messages
to be
Transmitted

|

node 3

Messages

to be to be
Transmitted Transmitted

L’ node N neode 2

Messages

System
Radius

node 1

Messages
to be
Transnitted

Figure 3.2 Ring Network Physical Layout

o
)
|

e - - . PURIEEL R - .

SN N R T e e = e e e w m W
I A A P i A e A A N R Gl 2t 0B g4a fire Ban B Aee av o e -—
~ LR I R AR A A ot L Bon g Lol gD N M e ool i 08 o Ll Sd g g

L

PR

N A

L I S P
[N AT
yle e e

(3
| 3y iy

’ "; '..

RIRRIOERY | (Ut
e R} PR
-t atatatala SRR .

e

A B o
P PR U
. O .

AL .

.
VI S )

~



e

s

Transmission Time (once around the ring)

Figure 3.

AN e .."’-“ “ 7 .. .“- . e e - .
Aal g o e Lo ‘.‘(A_"u‘.:'..' s als e

g
\
;
1
curve num of mes xmit mes length "
nun nodes rate (khz2) (microcec) .
A 5 0.1 0.5 -
B 5 0.1 10.0 i
C S 10.0 10.0 cd
D 5 10.0 50.0 ’
E 50 0.1 0.5 4
3 50 0.1 10.0 '}
G 50 10.0 10.0 i
H 50 10.0 50.0 =
10.0 Ia
mi]li 9
sec
H
1.0 _
milli
sec G —
F
D
100 _|
micro C /
sec B
E
10
micro
sec
A
1
micro ! ! L
sec .01 A 1.0 16.0

3 Serial Message Transmission Time

System Radfus (kilometers)

N S AT AP N
ettt el tdtdetudetb b o e o a6 2 e e LT




i T TTTTTTTE - T PRy
CE e A LRANS 2 e Aae o AN sencan o ¢ roeegr—
i
23 "
content, to the LSMSIU. This consideration takes into account, begides o
the serial transmission parameters, the local shared memory speed, i
information detection and subsequent control time, incoming data rates {1
from the network and the actual rate of information creation due to the t%
~
dynamics of the real-time software. :b
\'J
LOCAL SHARFED MEMORY SERIAL INTERFACE UNIT j:
The Local Shared Memory and Serial Interface Unit residing on the ‘i

processor bus of each networked computer is the respective computer's
interface to the network. A block diagram of the LSMSIU is contained
in figure 2.2.

Each computer sends information to the network through its LSMSIU,
The LSMSIU contains a local copy of shared data and appears to be
identical to the host CPU as would be a conventional shared memory
system. When the host CPU reads shared data, he does so by reading his
local copy of shared data from the LSMSIU, Shared data reads assert no
external serial network acvtion whatsocever. When the host CPU writes to
shared data, the LSMSIU checks for possible Iinformation content of the
written data. If information content is detected, the information is
transmitted for reception by all LSMSIU's in the network. Information

is present when the written data is different than the data previously

residing at the concerned memory location.

The LSMSIU also receives 1nformation from other LSMSIU network
nodes. When the information is received, the Llocal Shared Memory (LSM)
is updated and a DAVI {Interrupt 1is generated. The vector of the
interrupt directs the host CPU program counter to the software program
| that must (or may) respond to the incoming information. This construct

permits the data-driven (or information driven) aspects of this
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project.

The local sghared memory interfaces to the host CPU bus by
conventional CPU bus to memory cqmmunications. Essentially this 1is a
parallel dinterface with address, data and control 1lines. Thie
circuitry of the LSMSIU interface is nothing unconventional. The LSM
word size is the same as the host CPU and the word count must be large
enough to accommodate the requirements of the software task at hand.
The LSM has four accees ports; one each for the host CPU, the serial
transmitter, the serial receiver and the information detection port.
The information and transmitter ports are read only with the receiver
port being write only and the host CPU port being read/write.

Information is exclusively generated when the host CPU writes new
data to a memory location; especially in this case to an LSM address
location. It is possible for the host CPU to write data to a memory
location that is not new. That is, the written data is the same as the
data residing in the particular memory location before the write
occurs. In this case, information 1s not generated. This situation
often occurs with real-time system computations. By design, the LSMSIU
shall transmit information on the external information bus as a result
of the host CPU writing informétion to the LSM.

To detect for information occurrence a data comparator 1is
employed. When the host processor pérforms a write to local shared
memory, the following sequence occurs:

(1) The write action is detected.

(2) The LSM reads and then stores separately-the appropriate

memory location contents for the impending compare action.
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(3) The write dats 1s then compared to iliv existing data from
step 2.

(4) 1f the data is new, the data is written to the LSM and is
sent along with its eddress to the serial transmitter where
it 1{s transmitted on the information bus.

(5) If the data is not new, the sequence is terminated.

The serial transmitter 1s essentially a shift register and a
fiber-optic transmitter which transmite the LSMSIU generated
information to the downstream node. The transmitter receives the
information from the LSM. The transmitter can also contain a
First-In-First-Out (FIFO) buffer if the information is generated faster
than the network transmission speed.

The Data Address Vectored Interrupt mechanism 1involves the
fiber-optic serial receiver, the host processor 1interrupt circuitry
coupled with the vector address lookup table. The receiver 1ig a shift
register that also contains a FIFO buffer to accommodate high burst
data rates. When information is received, th: 1LSM is updated and a
host CPU interrupt 1s generated. The vector of the interrupt 1is
determined by the contents of the vector address lookup table. The
address portion of the information received 1s emploved for writing
into the LSM as well as retrieving the vector address from the table.

The table is loaded prior to run time with vectors for the DAVI
interrupt. The contents of the table directly point to the address of
the software program that must respond appropriately to the incoming
information. The DAVI circuitry may be programmed to respond to the

echoed reception of its own generated information.
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4. DATA-DRIVEN SOFTWARE COWCEPT ELABORATION

Software for this scheme 15 completely interrupt driven. The
interrupt occurs with the receipt of each word of information. It is
not hard to reason that the subsequent gcheduling of software model
responds to data-driven interrupts can be complicated. The success of
the scheme will depend on many factors 1including: (1) Interrupt
context switching time, (2) Ability to structure a large program as a
many module program with execution time efficient modules, (3) Ability
to separate time dependent and independent modules, and (4) Ability to
determine the required dynamic workload of the real-time software in
order to program time dependent sensitivities. The data-driven soft-
ware concept can be explained by the following component discussions

followed by a flight simulator example.

REAL-TIME OPERATING SYSTEM

An operating system needs to be designed exclusively for real-time
applications of the data-driven system. It must schedule interrupt-
responding program execution, set dynamic interrupt priority levels,
swap memory in from secondary storge. In large systems where many
interactive users may be present background tasks must also be

scheduled.

SECONDARY MEMORY UTILIZATION
With conventional synchronous Treal-time systems the input to
output response time averages one-halt the frame time or about 10 to 15
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milliseconds. These systems can not use se ondary swapping wmemory
since there is not enough time to detect thast an input is requiring a
non-resident program to be executed, swap in the program and then
execute the program, all in 10 to 15 milliseconds. If the response 1is
required for human consumption, & 15 or 100 millisecond response time
is acceptable; the human can not tell the difference. With the
response time of concern, there is enough time tc swap in programs for
subsequent execution 1if the swap is commanded at the time of dinput
information creation and not at a time later when the input 1s polled.
The swappable programs should be the infrequently wused or slower
required response time programs. The memory swapping techniques are a

typical concern of operating system technology.

DATA FLOW GRAPHICAL PROGRAMMING

To 1{1llustrate the interdependencies of the shared data and
corresponding data-driven software modules, a graphical approach is
needed in the programming-edit phase of the software development. This
graphical approach 1is similar to the conventional Data Flow graphical

approach to programming as illustrated in Sohk [2].

HIGH ORDER LANGUAGE IMPLFMENTATION

Suppose that we are programming the proposed data-driven system in
Fortran or a similar language. In addition to the real-time cperating
system, the program would be a collection of DAVI {nterrupt handlers.
However, additional language constructs are needed tc simplify the
programming process. A software subroutine would harndle each DAVI,
Instead of a'return’ statement, 8 'return from interrupt' statement

would be needed at the end of each interrupt hgndling subroutine,.
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DATA-DRIVEN REAL~TIME PLIGHT SIMULATOR SQFTWARE

Consider the real-time flight simulator of Pigure 1.6. The
corresponding software flow graph is 1llustrated in Figure 4.1,
Whenever a cockpit input variable changes, the respective software
module 1is executed. gﬁbsequent modules aléﬁé~“the flow graph are
executed until a module does not produce a change in its output, The
flow then dies at this point. 1If the position, attitude or roll
outputs change, the out~the-window scene is commanded to be redrawn.

The flow graph for the simulator appears similar to an analog
computer diagram including feedback constructs. This implies that
along the flow, summations and integratioﬁs are performed. This
similarity 1s not unintentional. Allowing for analog and digital
signal resclution differences the flow graph technique along with
data-driven constructs appears to be a viable approach to construct a
real-time near-continuous system from digital components.

Now, what happens 1if none of the cockpit inputs change? Surely
the process must not freeze. The answer ... there 1s always one input
variable that never stops changing. That varisble is the Time . The
quantizing of ¢this wvariable for the purpose of data-driving time
dependent wmodules is the task of the Simulatioﬁ Dynamic Workload
Assessment . (SDWA) module. The SDWA module is tightly coupled to the
real-time operating system. This module must Betérmine the sensitivity
to time for each of the time dependent modules in the system. The
eensitivitj may be dynaﬁic. That is to say thatmghe»OTw scene must be
updated more frequently when flying low and fast than when flying high
and slow. Admittedly, this time dependency calculation and modu;g"

scheduling process appears to be a step backward toward the synchronous
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repeating scheme we are trying to avoid. however, time is treated only
as & dynamic shared variable data-driving the software. The workload
term is & result of fidelity maintenance of the simulation. To
maintain & reasonable fidelity with a desire increase the systen
efficiency under a data-driven scheme, the software must 'work' harder

as the pilot flies lower and faster.
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5.  ADVANCED SYSTEM ELABURSTION

During the course of the research performed for this project it
became apparent that the project could bte eternslly enhanced. The
basic structure 1is firm but capability extensions and applications
appear unbounded. A discussion of several of the extended capability

applicarions follows.

SINGLE COMPUTER SYSTLM

It is possible that this data-driven system can be implemented
within a single computer system. The serial network transmission
scheme 1s not required. The LSMSIU circuit would receive itc cwn
transmissions as if the data were coming froo another computer. A

diagram of the hardware is shown in figure 5.1.
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Data address vectored interrupts responding to changing data would
occur in identical fashion to the multiple computer data-driven system,
The real-time operating system will be more complicated and must be
able to handle interrupt driven recursion resulting from software
modules with tight feedback., These modules have an input which 1s

directly driven from the module output.

DATA VARIABLE SENSITIVITY

The system ugser will most likely not desire an interrupt to occur
when each variable changes by a small amount. For example, an
interrupt 1s not needed when the aircraft simulator altitude changes
from 30,000 to 30,001 feet. Likewise, the OTW scene need not be
updated for this minute altitude change. Therefore, a data variable
sensitivity parameter needs to be introduced.

Implementation of the sensitivity would require 2 additional local
memories; one to store the sensitivity parameter for each data variable
and one to store the value of the data variable that last instigated a
DAVI. The original local shared memory would still contain the latest
and most precise value of each data variable. It 1s noted that the
sensitivity parameter can be implemented as an absolute value or as a
per cent value change in the dynamic data variable, e.g. a DAVI may
occur when the aircraft altitude changes by 300 feet or 1 percent. The
sensitivity parameter should be adaptive to dynamic conditions during
run time. For example, as the altitude decreases, the sensitivity

should most likely increase. The LSMSIU with the sensitivity memories

is shown in figure 5.2,
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Figure 5.2 LSMSIU with Data Sensitivity Parameter Implementation
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REAL-TIME GRAPHICS IMPLEMENTATION o4

In many of the video (raster or stroke) graphics units, out the ||

window scenes are generated by a series of line figures. The lines are
periodically redrawn to give the effect of smooth motion. However, 1f
the motion i1s slow, identical picture are unnecessarily updated and
redrawvn. And if the motion 1s very fast, the lines jump in quantum
leaps due to slow update rates.

Data-driven concepts can solve this problem by 4introducing a
data-driven scene dynamic factor. This factor would indicate the
absolute angular change in position of the physically nearest item in
the viewport. Then as the angular position changes by an amount

greater than the angular sensitivity of the eye or resolution of the

video display, a DAVI would occur forcing a scene update. Also to be
considered is the speed of the graphics unit. There 1s no need to

command picture updates faster than the unit can draw a single picture.

MULTI-VARIABLE SYNCHRONIZATION

A special situation arises when one software module has several
inputs that are derived from a group of data-driven outputs fromw
another module such as the velocity calculation in figure 4.1. It is
required that the module is scheduled only once when any or all of its
inputs change. It 1is undesireable for the module to be executed
unnecessarily.

Therefore, for modules with several data-driven outputs, an output
'"flush' command is required. All outputs with changed values will be

transmitted contiguously with the flush command. If no outputs have

changed, nothing will happen with the flush command. In this mode, &

data receiving module will only be executed once for the output group.
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DATA TAGGING

Data tagging 1is a technique that adds t+ each data variable a

field indicating the type and precision of the variabie. Examples are: !
a 3 byte integer, a B8 byte floating point number, a single byte g
character or a single byte logical. This te:hrique saves space in the é
instruction codes of the computer. For exam;l¢, the op-code indicates a
add this to that, when fetching the operands, the tag field indicates

. whether this and that are integers or reals, then according to the tag
field the proper integer or floating point mathematics is performed. ih

T
-1

Normal shared memory alone does not know the type of the variable being
stored, Data tagging could assist the {information detection,
transmission and reception process. To detect the degree of change in
a variable, the inforwmation detection unit wust know the starting
address of the variable as well as the tvpe of the variable. This is

especially true for variables that are longer than one computer word.

SERIAL TRANSMISSION ERROR DETECTION AND CORRECTION
With this system design, mnetwork transmission errors are

disastrous. In synchronous simulation systens where all variables are

update continuously, a single variable error would vanish after one

frame time. But in this system a single error may be permanent. 4
Therefore effective error detection and correction schemes are iﬁ
required.

With the ring network architecture, messages are echoed back to .4

the originator. The originator can check the echced message for
errors. A retransmission scheme is required to correct the originator
detected errors. When the recelver detccte an error and does not

detect a retransmission, he may request 8 retranswission via s
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date-driven retransmission variable. sisplementation of the
retransmission detection circuit appears cumbersome but possible.

Considering that 100 Mbit/sec fiber-optic links transmit 100 bits
in a microsecond, there 1s time available to include many error

detection and correction code bits.
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6. PROTOTYPE DESIGKN

A two node system was designed to sunport the validity of the
major architecture design. The system was decigned using readily
availeble Motorola MC68000 microprocessor computer boards which are

labelled 'Educational Circuit Boards (ECB).'

MRS O g S
e

Each ECB contains: (1) a 4 Mhz MC68000 CPU, (2) 16 Kbyte Read-

Only-Memory (ROM) containing the supplied operating system, (3) 32
Kbyte Random Access Memory (RAM), (4) 2, RS-232 serial ports, one for
the terminal, one for the host computer 1f required, (5) parallel
printer interface with timer. Each Local Shared Memory Serial
Interface Unit hardware designed for this project includes (1) 256 byte
RAM, (2) 1 Mbit/sec electrical serial interface, (3) information
detection circuitry, and (4) microprogrammed control unit. A block
diagram of the MC68000 ECB and Network Node 1s shown in figure 6.1.
Shown on the left of the buffer is the MC68(N: ECB and on the right is

the LSMSIU. The LSMSIU has no DAVI vector lookup table. This table is

to be Iimplemented in the ECB memory. When serial information {is
received, the ECB 1is 1interrupted and ECB hosted software reads the
address of the information data. This address is then to be used to

vector through the ECB based DAVI lookup table.

The documentation 1llustrating all features of the M68000 ECB is
available 1in [7). The hardware schematics for a siogle LSMSIU ring
i network node is contained in Appendix I. The microprogram operations

are listed in Appendix 11.
37
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HARDWARE STRUCTURE
The following discussion 18 made referencing the Prototype

; Hardware Schematics in Appendix I. The Block Diagram 1llustrates the
entire interconnection including the:
(1) Data Bus and Address Bus Structure including the Local Shared

Memory, Comparator and Adrs to Data Buffer,
(2) Microcontroller,
(3) 68000 ECB to LSMSIU Interface Buffer,
(4) Parallel to Serial Transwmitter, and
(5) Serial to Parallel Receiver,

The LSMSIU data bus is an 8 bit tristate bus. The address bus is
also an 8 bit tristate bus. The LSM is implemented by 2, 2114 lk by 4
bit RAM's. For easy implementation with an 8 bit address, only 256 of
the 1024 bytes are used. The comparator is implemented by 2, 7485, 4
bit comparators. A latch to the B front end of the comparator s
employed while the data bus holds the A front end data when making
comparisons from the ECB write data to the 211¢ memorv contents. The
A=B comparator output anded with the micrccontroller comp-re enable

signal are employed to direct the LSM write sequence to the new data or

no new data write subsequences. The 7418374 address to data buffer i.
. employed when reading the address of the serially received information.
L The microcontroller is implemented by 2 2716 EPROM's giving a 2k
i by 16 bit controller. The outputs and sequences arc described in
Appendix 11

The 68000 ECB to LSMSTIU Interface Buffer bufferrs address, data and
) read, write and interrupt control sigrnals between the ECB and LSMSIU.

The El* line is a read/write strobe line assertéd when the ECB is

PPy
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communicating with the LSMSIU The DTACK and DTACK PIT* gignal are
slave responses when the read or write process is complete. The LSM
IRQ* or 6800 IRQ* signals are asserted when the LSMSIU interrupts the
ECB. The A09 address lines indicates to the LSMSIU whether the ECB {1s
communicating to the LSM or the vector address 7415374 buffer. A09 = 0
indicates the LSM should be activated while a ] indicates the vector
address buffer assertion.

The Parallel to Serial Transmitter consists of 2, 7418299 8 bit
shift registers and 1 74153 4-1 multiplexer. The serial out format is
in a simple binary format. It starts with a 1 microsecond high level
sync pulse fonlluwed by 1 microsecond low level followed by 8 bits of
address, MSB first and 8 bits of data, MSB {irst. When the
transmission 18 complete the bus returns tc a low level. The shift
registers and multiplexer are completely controlled by the
microcontroller.

The Serial to Perallel Receiver performs the complement process to
the transmitter. The recefver operates at a 16X sampling frequency and
employs 74163 counters frequency division to shift in the address and
data. The 2 shift registers clock in the address and data. When the
serial receive process 18 complete the receive requests an ECB
interrupt and the receiver remains busy until the serial data address

vector is read by the ECB.

HARDWARE OPERATIONS
The following operations can occur within the LSMSIU:
(1) ECB read of the Local Shared Memory,

(2) ECB write to the Local Shared Memory with:.

il it i eie i e A A s i A W e
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(a) a data change with subsequent serial information

transmission or,

(b) no data change,

(3) Serial reception of information including a data write to the
Local Shared Memory with an ECB interrupt, and address vector read.

Wwhen the ECB commands a read of the LSM, the microcontroller
starts in the LSM read sequence. The B bit address lines are asserted
directly from the interface buffer. The data line buffer is asserted
with the proper data direction. The 2114 RAM's are enabled driving
their contents on the data lines. DTACK is then asserted ending the
sequence.

When the ECB commands a write to the LSM, the microcontroller
starts in the LSM write sequence. The LSM data using the ECB driven
address lines 1is loaded into the comparator B latch. Then the ECB
driven data 1is asserted on the data bus and the comparator compares the
two data. If the data are identical the write old data subsequence 1is
commenced which 1s implemented via an immediate DTACK. If the data are
not equal, the new data is loaded into the LSM and the serial tramns-~
mitter and a lengthy serial transmit sequence 1s begun.

The Serial to Parallel Receiver shifts iIin address and data
information without microcontroller control. When the receive process
is complete the serial receive done microcontrol sequence is begun
simultaneously with interrupting the ECB. Via the microcontroller the
received information is loaded into the LSM snd the address information
is loaded into the address to data buffer for the vector read process.
The vector read process is asserted similar to the LSM read process and

differs in that address bit 09 is asserted which commands the
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{nformation address to data buffer to transmit its data at this time.

L S RIS IP R S L U U D DU U SR I Y D e N e . . L T T T e e




— B A S A Rt AR g A Bl At and il Badh Ged e

Do g e o

7. SUMMARY AND CONCLUSIONS

An integrated hardware and software architecture encompassing a
data-driven information network for real-time multiple computer systems
has been introduced. Innovative highlights of the architecture are:

(1) A shared memory interface scheme for local area (less than 10
km) networked computers involving fiber-optics.

(2) Dynamic data-driven scheduled execution of real-time
gof tware.

(3) A scheme which enables swapping of programs in a real-time
environment.

The concepts of the architecture have been 1llustrated in a
'‘cookbook' fashion with a flight simulator system example as an
educational aid. The actual efficiency and community acceptance of the
scheme remains to be determined. The utility of the hardware scheme
with or without the data-driven software constructs appears beneficial
for real-time systems such as multi-computer flight simulators. The
scheme as it has been disclosed could be employed in non-real-time
applications of multiple computer systems. However, due to ineffic-
iencies of the scheme when sending a 'block' of data through the shared
memory, this system will most likely not be used in non-real-time
environments. Although, with some modif}fations slightly impaﬁting
real-time network performance, the scheme could be made useful wgen
sending blocks of data.

To the application programmer the new hardware system is a simple

43
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shared memory for data communication. The programmer must implement
shared data programs with proper synchronization. Multiple computers

simultaneously writing to the same location 4s not allowed. In this

event, different copies of a shared memory data item may have different
values which would be catastrophic.

The software scheme is immature at this point. Extensive research
beyond the scope of a thesis project is required. The complexity and
utility factors of an implemented data~driven real-time operating
system remain to be evaluated, These factors need to be weighed
against those in current synchronous real-time operating systems. The
main 1idea behind the date-driven real-time system is to execute
software modules only when a data input to the module changes value.
This simply 1increases the efficiency of the system. The scheme can
become very complex with interactive modules containing multiple data
inputs and outputs. Execution control of these modules must also
consider outputs from other modules queued for running on this or other
networked computers, as well as maximum and minimum rates of execution
(i.e. module 1/0 sensitivity to time). Without careful operating
system design, modules with multiple 4inputs arriving from several
external computers may execute much more often than necessary.

Th utility of the proposed data-driven replicated shared memory
network with fiber-optic serial transmission appears very high. No
hardware or software problems are expected with implementations of the
network and conventional synchronous real-time software. As indicated,
real-time data-driven operating system with the proposed network

requires further research.
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APPENDIX II

PROTOTYPE MICROCONTROLLER FIRMWARE

MM SEE S

The microcode sequences illustrated on following pages control the
hardware sequences labelled:
) (1) Writing data to the local shared memory main sequence,
Base address 600.
- (2) Writing new data to the local shared memory subsequence,
Base address 200.
(3) WwWriting old data to the local shared memory subsequence,
~ Base address 100.
(4) Reading local shared memory main sequence,
Base address 700.
- (5) Reading the new data vector address,
: Base address 500.
(6) Serial Receiver done handler,

Base address 300.

The microcontroller is implemented with 2, 2K by 8 bit EPROMS and
there are 16 output control lines divided into high and low 8 bits.

The lines are defined as follows:
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High 8 bits:
Bits 6 and 7 control the A and B select inputs to the output of the
serial transmitter. There are 3 output possibilities defined which are:

Bit 7, Bit 6, Output definition

0 0 low (or 0)

0 1 high (or 1)

1 0 undefined

1 1 shift register output is serial transmitter output

Bits 4 and S5 control the transmitter shift register state which are;

Bit 5, Bit 4, Shift Register State

0 0 Hold

0 1 Shift Right

1 ] Shift Left (not to be used)
1 1 Load

Bit 3 is the clock input to the shift register.

Bit 2 is the local shared memory RAM enable line.

Bit 1 1s the local shared memory RAM write enable line.

Bit O enable the 7418374 buffer to latch on to the address of the

serially received data.

Low 8 bits

Bit 7 enable the information detection data comparator.

Bit 6 clocks in the data to the B input of the comparator.

Bit 5 enables the 7418374 buffer to transmit the serially received data
address on the data bus lines for hbst computer read.

Bit 4 enables the host computer address to be transmitted on the address

bus.
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Bit 3 enables the host computer data to be transmitted or received
to/from the data bus.
Bit 2 enables the date transfer acknowledge (DTACK) signal to the host
computer signifying the end of a data transfer to/from the host.
Bit 1 and O control the input to the sequencer which is defined as
follows:

Bit 1, Bit 0, Microcontroller control

0 0 no action

0 1 Reset the sequence; go to the idle state

1 0 Freeze control inputs inhibiting a major state change
1 1 no action



MICRO CONTROLLER SEQUENCE: write old data subsequence
BASE ADDRESS: 100 hexadecimal

HEX
ADDRESS

100
0!
02
03
04
05
06
07

08
09
0A
).
0C
0D
OE
OF

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
ID
1E
IF

20
21
22
23
24
25
26
27

CONTROLLER CONTROLLER CONTROLLER
HIGH BITS LOW BITS ACTION COMMENT
76543210 76543210

1 1 perform DTACK ending seq.




R e MR otk e S e S S e ad e s aad are ane e T T T T Y Y T T W U W W W T o e w

56

MICRO CONTROLLER SEQUENCE: write new data subsequence
BASE ADDRESS: 200

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT
76543210 765432

—
o

200 111 11 11 1 frz, 68k to A & D busses
01 111111 11 1 1d xmitr & RAM, shift out 1
02 11 11 11 1 shift out a 0
03 11 1
04 11 1 11 1 A7 on serial out
05 11 1 11 1
06 11 11 11 1 A6 on serial out
07 11 1 11 1
08 11 11 11 1 A5 on serial out
09 11 1 11 1
0A 11 11 11 1 A4 on serial out
0B 11 1 11 1
oc 11 11 1111 DTACK; A3 on serial out
0D 11 1 11 DTACK
OF 11 11 11 DTACK; A2 on serial out
OF 11 1 11 DTACK
10 11 11 11 DTACK; Al on serial out
11 11 1 11 DTACK
12 11 11 11 DTACK; A0 on serial out
13 11 1 11 DTACK
14 11 11 11 DTACK; D7 on serial out
15 11 1 11 DTACK
16 11 11 11 DTACK; D6 on serial out
17 11 1 11 DTACK
18 11 11 11 DTACK; D5 on serial out
19 11 1 11 DTACK
1A 11 11 11 DTACK; D4 on serial out
1B 11 1 11 DTACK
1C 11 11 11 DTACK; D3 on serial out
1D 11 1 11 DTACK
1E 11 11 11 DTACK; D2 on serial out
1F 11 1 11 DTACK
20 11 11 11 DTACK; D1 on serial out
21 11 1 11 DTACK
22 11 11 11 DTACK; DO on serial out
23 11 1 11 DTACK
24 1 1 Reset; 0 on serial out
25 1 1 ditto; goes to base adrs 0
26

27
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MICRO CONTROLLER SEQUENCE: serial receive done handler sequence
BASE ADDRESS: 300

M- an an an s ah el a4

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOw BITS ACTION COMMENT
76543210 76543210

1 Frz; revr'ls299 to A&D bus
01 11 1 16299 to A&D, RAM write ena
02 1 16299 to ASD,
03 1 Reset sequence
04 1 Reset Bequence
05
06

. 07

300

—

08
09
0A
0B
oC
oD
OE
OF

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1B
1F

20
21
22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: vector address read sequence
BASE ADDRESS: 500

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT
76543210 76543210

Frz; rcvr adrs to D bus
ditto
ditto & DTACK
ditto & DTACK
1 unfrz; reset sequence

500
01
02
03
04
05
06
07

— e s e e

P bt et s

bt s s
Pt s s

08
09
0A
OB
ocC
0D
OE
OF

10
11
12
13
14
15
16
17

18
19 ¢
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27

SN R R RSN -

YR e T T e s e e T S e T e e e e S e e e St <t
ntaliale” ol ate® ot e s st da g il i at sl et aSa s ada a o o o o AP PY PY TUFE W P WU PR PR UV o vy vy ot ot o




PN PP U R R TSI U W U W SRy U WP T P U G G Sy D) PPy Yit W G ERr G . WO, SO S . SRS S

B R R T W T W W W Y W wpws

<

59

MICRO CONTROLLER SEQUENCE: local shared memory write
BASE ADDRESS: 600

HEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT
76543210 76543210

1 Ram ena., freeze

1 Ram data to compar B input
1 68k data to compar A input
03 1 1 1 Compare ena. unfrz, res seq
04 1 ) 1 ditto allows comparator

05 result to direct to proper
06 subsequence @ base adress
07 200 for new data write or
100 for old data write

600 1
0l ) 1
02

[ i S
—

08
09
0A
0B
ocC
oD
OE
OF

10
11
12
13
14
15
16
17

18
19
1A
1B
1C
1D
1E
1F

20
21
22
23
24
25
26
27
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MICRO CONTROLLER SEQUENCE: local shared memory read
BASE ADDRESS: 700

BEX CONTROLLER CONTROLLER CONTROLLER
ADDRESS HIGH BITS LOW BITS ACTION COMMENT
76543210 76543210

Frz, 68k to A&D bus,Ram ena
ditto

ditto & DTACK

ditto

1 1 Reset seq, unfrz, DTACK

700
™ 01
a 02
N 03

L I e N
L
Pt Pt s put et
P
Pt Pt et e

04
05

' 06 .
07

08 .

09

0A

0B

oc

oD

OE
OF

10
11
12
13
14
15
16
17

18
19
1A
1B
iC
1D
1E
IF

23
21
22
23
24
25
26
27
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